Running and validating topic models

Wouter van Atteveldt

2019
What are topic models?

- Some words and documents are quite similar to each other
 - company, business, form, enterprise, corporation
 - Works by Asimov (and papers on framing ;-))
- Can we automatically figure out what words and documents form clusters?
 - topic = cluster of words and documents
Less informal definition

- DTM is very high dimensional space
- But many rows/columns correlate very strongly
- Topics: latent 'factors' that 'explain' the data in fewer dimensions
- Topic modeling as dimensionality reduction
 - (cf. factor analysis, PCA, hierarchical clustering etc.)
Graphical interpretation

(see handout Graphical Interpretation, top part)
LDA topic modeling

- Technical details will follow
- **Generative process**: LDA 'models' how an authors writes a document
 - pick a topic, grab random words from topic
- Fitting a topic model
Generative process

- For each document d:
 - Choose the number of words
 - Choose a mixture of topics
 - For each word:
 - Choose a topic from the mixture
 - Choose a word from the topic

Mixture model: Each document has multiple topics, each word can be in multiple topics
Plate notation

Dirichlet parameter

Per-document topic proportions

Per-word topic assignment

Observed word

Topics

Topic hyperparameter

α

θ_d

Z_{d,n} \rightarrow W_{d,n} \sim N_D

\beta_k

\eta

Intro: What are topic models?
Plate notation

1. Random word distribution β_i for all K topics
2. For each document d:
 1. Draw random topic proportions θ_d
 2. For each word n:
 1. Draw actual topic $Z_{d,n}$ from θ_d
 2. Draw actual word $W_{d,n}$ from β_z
Latent Dirichlet Allocation

- β_i and θ_d are drawn from *dirichlet distributions*
 - Distributions over proportions, i.e. over multinomial distributions
- β_i and θ_d are latent:
 - We can’t measure them directly
 - They are assumed to explain the selection of manifest words
- How to determine the value of the latent variables?
Fitting the model

- Generative model 'assumes' that we know topics and want documents
- But we have documents and want topics!
 - β: Which words belong to each topic?
 - θ: Which documents belong to each topic?
- Given the model, we can generate new data (W)
- Find the model that maximizes likelihood of our actual text
Examples

Some examples of topic models "in the wild"
Nuclear technology

- Topic model of NY Times coverage of nuclear technology
- Similar results as Gamson & Modigliani (1989)?
FIGURE 3
Occurrence of topics that have a strong temporal component
FIGURE 4
Occurrence over time of detailed ($K = 25$) topics that constitute the Accidents/ Danger topic from the $K = 10$ model
Scientific topics

- Topic model of PNAS abstracts
- Are topics meaningful? Overlap with manual class designations?
- Can we identify 'hot' topics
A generalized1 fundamental146 theorem267 of natural250 selection250 is derived233 for populations250 incorporating149 both genetic250 and cultural250 transmission25. The phenotype3 is determined17 by an arbitrary3 number287 of multiallelic3 loci3 with two271-factor60 epistasis250 and an arbitrary149 linkage3 map3, as well as by cultural250 transmission25 from the parents250. Generations250 are discrete60 but partially271 overlapping146, and mating250 may be nonrandom250 at either the genotypic250 or the phenotypic250 level199 (or both). I show25 that cultural250 transmission25 has several173 important173 implications17 for the evolution250 of population250 fitness250, most notably230 that there is a time72 lag72 in the response213 to selection250 such that the future257 evolution250 depends103 on the past selection250 history250 of the population250.
Intro: What are topic models?
Running and validating topic models

Wouter van Atteveldt
library(topicmodels)
dtm <- convert(dfm, to = "topicmodels")
m <- LDA(dtm, method = "Gibbs", k = 10, control=list(alpha=.5))

terms(m, 5) # top terms per topic
posterior(m)$topics # topics per document
posterior(m)terms # topics per term
m@wordassignments # topics per (actual) word

(shortest workshop ever! :))
Hyperparameters

- $k =$ number of topics
- $\alpha =$ 'dispersion' parameter
 - high $\alpha =$ many topics per documents
 - low $\alpha =$ fewer topics per document
 - default $= 50/k$
 - I prefer lower α, e.g. $5/k$ or $1/k$

(more detail tomorrow!)
Hands-on

- Get your data
- Run some topic models
- Inspect terms, documents
- Try out different settings of alpha and k
- Try out different preprocessing (stopwords, lemma, filter, etc)
- What do you think?
How to validate topic models?

1. Face validity: informal inspection, present top words
2. Goodness-of-fit/predictive likelihood measures
3. External task improvement
4. Compare to human coding of desired or derived topics
5. Formal validation of topic coherence

(cf. Grimmer & Stewart, Political Analysis)
Face validity

- Probably most common method
- Inspect/present top-n words per topic
- Better: also inspect/present top-n documents per topic
 - Context matters!
- Problem: we’re good at seeing patterns
 - And we want to see the pattern!
Goodness-of-fit

- How likely are the actual texts according to the model
- Use separate ‘test’ data to prevent overfitting

`topicmodels::perplexity(m, dtm_test)`
FIGURE 2
Perplexity of LDA models with different numbers of topics and alpha

External/concurrent validity

- **External validity**: Does having the topic model improve a 'downstream' task?
 - e.g. better retrieval of relevant documents, predict dependent variable
- **Concurrent validity**: Quantitative manual coding of sample given desired (or derived) codebook, compare
 - (cf. intercoder reliability)
Validation of topic coherence

- Topics are supposed to be meaningful and coherent
- Test directly with human/crowd coders:
 - Pick 'odd word out' from topic
 - Pick 'odd topic out' for document

Odd word out

- Pick a topic
- Get top-N words for that topic
- Get random ’intruder’ word
 - That has low probability in chosen topic
 - But high probability in other topic
- Can human distinguish between actual and intruder words?
Odd topic out

- Pick a document
- Get top-N topics for that document
- Pick a random topic that is unlikely in that document
- Present the topics (as top-word lists)
- Can human pick out which topic does not belong?
Figure 2: Screenshots of our two human tasks. In the word intrusion task (left), subjects are presented with a set of words and asked to select the word which does not belong with the others. In the *topic intrusion* task (right), users are given a document’s title and the first few sentences of the document. The users must select which of the four groups of words does not belong.
Validating topic models

Running and validating topic models

Intro

Running Topic Models

Validating topic models
Running and Validating Topic Models

Validating topic models

Running topic models

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Topics</th>
<th>LDA</th>
<th>CTM</th>
<th>PLSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW YORK TIMES</td>
<td>50</td>
<td>-7.3214 / 784.38</td>
<td>-7.3335 / 788.58</td>
<td>-7.3384 / 796.43</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-7.2761 / 778.24</td>
<td>-7.2647 / 762.16</td>
<td>-7.2834 / 785.05</td>
</tr>
<tr>
<td>WIKIPEDIA</td>
<td>50</td>
<td>-7.5257 / 961.86</td>
<td>-7.5332 / 936.58</td>
<td>-7.5378 / 975.88</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-7.4629 / 935.53</td>
<td>-7.4385 / 880.30</td>
<td>-7.4748 / 951.78</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>-7.4266 / 929.76</td>
<td>-7.3872 / 852.46</td>
<td>-7.4355 / 945.29</td>
</tr>
</tbody>
</table>

Figure 3: The model precision (Equation 1) for the three models on two corpora. Higher is better. Surprisingly, although CTM generally achieves a better predictive likelihood than the other models (Table 1), the topics it infers fare worst when evaluated against human judgments.
Intro

Running Topic Models

Validating topic models

Running and validating topic models

Wouter van Atteveldt
Hands-on

- Run a topic model! :)
- Try out different settings
 - hyperparameters: K, alpha, etc.
 - preprocessing: stemming, stop words, filters
 - subsets of documents (e.g. only positive/negative reviews; or take only contrasting words)
 - Optional: Make a scree plot (if not too much data)
- Validate/interpret based on:
 - Term list
 - Documents per topic